organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4,6-Tris(1-oxo-2-pyridylsulfanylmethyl)mesitylene methanol solvate

B. Ravindran Durai Nayagam,^a* Samuel Robinson Jebas,^b C. Ravi Samuelraj^a and Dieter Schollmeyer^c

^aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamil Nadu, India, ^bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India, and ^cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany

Correspondence e-mail: b_ravidurai@yahoo.com

Received 1 May 2008; accepted 3 May 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.151; data-to-parameter ratio = 15.1.

In the title compound, $C_{27}H_{27}N_3O_3S_3$ ·CH₄O, the dihedral angles formed by the mesitylene ring with the three oxopyridyl rings are 89.6 (1), 75.5 (1) and 80.69 (1)°, indicating that all three are nearly perpendicular to the mesitylene ring. Intramolecular C–H···S hydrogen bonds generate *S*(6) ring motifs. The crystal structure is stabilized by intramolecular C–H···S and intermolecular C–H···O hydrogen bonds and weak C–H··· π interactions.

Related literature

For related literature on the biological activity of *N*-oxides see: Lobana *et al.*, (1989); Symons & West (1985); Katsuyuki *et al.* (1991); Bovin *et al.* (1992); Leonard *et al.*(1955). For related literature on *N*-oxides, see: Jebas *et al.* (2005); Ravindran *et al.* (2008). For bond-length data, see: Allen *et al.* (1987); Jebas *et al.* (2005); Ravindran *et al.* (2008). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $C_{27}H_{27}N_3O_3S_3 \cdot CH_4O$ $M_r = 569.74$ Monoclinic, $P_{2_1/c}$ a = 11.9644 (17) Å b = 14.9129 (8) Å c = 15.467 (2) Å $\beta = 91.733 (7)^\circ$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.296, T_{\max} = 0.842$ 5226 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.150$ S = 1.085226 reflections 347 parameters $V = 2758.4 \text{ (6) } \text{\AA}^{3}$ Z = 4Cu K\alpha radiation $\mu = 2.78 \text{ mm}^{-1}$ T = 298 (2) K0.52 \times 0.42 \times 0.06 mm

5226 independent reflections 4156 reflections with $I > 2\sigma(I)$ 3 standard reflections frequency: 60 min intensity decay: 3%

2 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1L-H1L\cdots O27$	0.82	2.41	2.804 (7)	110
$C16-H16A\cdots O36^{i}$	0.96	2.47	3.348 (4)	152
C16−H16B···S20	0.96	2.68	3.420 (3)	135
C18−H18B···S29	0.96	2.79	3.515 (3)	133
$C25-H25\cdots O7^{ii}$	0.93	2.44	3.147 (5)	133
$C28-H28A\cdots O7^{i}$	0.97	2.48	3.397 (3)	157
C31-H31···O27 ⁱⁱⁱ	0.93	2.35	3.107 (4)	139
$C2-H2\cdots Cg1^{iv}$	0.93	2.91	3.774 (3)	154
$C4-H4\cdots Cg1^{v}$	0.93	2.67	3.377 (3)	134

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z; (v) $x, -y - \frac{1}{2}, z - \frac{3}{2}$. *Cg*1 is the centroid of the C10–C15 ring.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CAD-4 Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

BRDN thanks the University Grants Commission, India, for a Teacher Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2565).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145– 150.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.

- Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.
- Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.
- Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, 0409.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379– 381.

Acta Cryst. (2008). E64, o1036-o1037 [doi:10.1107/S1600536808013081]

2,4,6-Tris(1-oxo-2-pyridylsulfanylmethyl)mesitylene methanol solvate

B. Ravindran Durai Nayagam, S. R. Jebas, C. Ravi Samuelraj and D. Schollmeyer

Comment

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons *et al.*,1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki *et al.*,1991; Bovin *et al.* 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard *et al.*,1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas *et al.*, 2005; Ravindran *et al.*, 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas *et al.*, 2005; Ravindran *et al.*, 2008). The N–O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N–oxides (Allen *et al.*, 1987).

The meistylene ring is planar with the maximum deviation from planarity being -0.036 (1) Å. The dihedral angle formed by the meistylene ring with the oxopyridinium rings (C1–C5/N6) 89.6 (1) $^{\circ}$; (C21–C25/N26) 75.5 (1) $^{\circ}$ and (C30–C34/N35) 80.69 (1) $^{\circ}$ respectively, indicating that all the three oxopyridinium rings are perpendicular to the meistylene ring.

Intramolecular C—H···S hydrogen bonds generate S(6)S(6) ring motifs. The crystal structure is stabilized by intramolecular C—H···S and intermolecular C—H··· O hydrogen bonds and weak C—H··· π interactions (Table 1, where Cg1 is the centroid of the ring C10-C15).

Experimental

A mixture of tris(bromomethyl)mesitylene (0.399 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.448 g, 3 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried (0.494 g, 92%). The compound was recrystallized from chloroform-methanol (1:2 v/v).

Refinement

H atoms were positioned geometrically [C—H = 0.93 (aromatic), 0.96 Å (methyl) 0.97 Å (methylene), and 0.82Å O—H] and refined using a riding model, with $U_{iso}(H) = 1.2$ or $-1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering scheme.

2,4,6-Tris(1-oxo-2-pyridylsulfanylmethyl)mesitylene methanol solvate

Crystal data	
$C_{27}H_{27}N_{3}O_{3}S_{3}\cdot CH_{4}O$	$F_{000} = 1200$
$M_r = 569.74$	$D_{\rm x} = 1.372 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation $\lambda = 1.54178$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
<i>a</i> = 11.9644 (17) Å	$\theta = 61 - 69^{\circ}$
<i>b</i> = 14.9129 (8) Å	$\mu = 2.78 \text{ mm}^{-1}$
c = 15.467 (2) Å	T = 298 (2) K
$\beta = 91.733 \ (7)^{\circ}$	Block, colourless
V = 2758.4 (6) Å ³	$0.52\times0.42\times0.06~mm$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$\theta_{\text{max}} = 69.9^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.7^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 14$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = -18 \rightarrow 0$
$T_{\min} = 0.296, \ T_{\max} = 0.842$	$l = -18 \rightarrow 18$
5226 measured reflections	3 standard reflections
5226 independent reflections	every 60 min
4156 reflections with $I > 2\sigma(I)$	intensity decay: 3%
$R_{\text{int}} = 0$	

Refinement

Least-squares matrix: full H-ato	m parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.150$ $wR(F^2) = 0.150$ $wR(F^2) = 0.150$	$\frac{1}{[\sigma^2(F_o^2) + (0.0834P)^2 + 0.7123P]}{P = (F_o^2 + 2F_c^2)/3}$ max = 0.001

<i>S</i> = 1.09	$\Delta \rho_{max} = 0.49 \text{ e } \text{\AA}^{-3}$
5226 reflections	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
347 parameters	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$				
	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.3585 (2)	0.25409 (17)	-0.03619 (16)	0.0411 (6)

Cl	0.3585 (2)	0.25409 (17)	-0.03619 (16)	0.0411 (6)
C2	0.4031 (2)	0.2831 (2)	-0.11233 (17)	0.0509 (7)
H2	0.4415	0.3372	-0.114	0.061*
C3	0.3906 (3)	0.2318 (2)	-0.18594 (19)	0.0595 (8)
Н3	0.4189	0.2516	-0.2379	0.071*
C4	0.3357 (3)	0.1508 (2)	-0.1818 (2)	0.0627 (8)
H4	0.3283	0.1149	-0.2307	0.075*
C5	0.2921 (3)	0.1234 (2)	-0.1054 (2)	0.0593 (8)
Н5	0.2552	0.0686	-0.1028	0.071*
N6	0.30179 (19)	0.17480 (15)	-0.03383 (15)	0.0475 (5)
07	0.2579 (2)	0.15045 (15)	0.03880 (14)	0.0660 (6)
S8	0.36161 (6)	0.30782 (4)	0.06449 (4)	0.04599 (19)
C9	0.4460 (2)	0.40587 (17)	0.04115 (15)	0.0442 (6)
H9A	0.5203	0.3879	0.0245	0.053*
H9B	0.4117	0.4404	-0.0057	0.053*
C10	0.4525 (2)	0.46111 (16)	0.12348 (15)	0.0380 (5)
C11	0.3677 (2)	0.52357 (17)	0.13909 (16)	0.0407 (5)
C12	0.3725 (2)	0.57310 (16)	0.21599 (16)	0.0401 (5)
C13	0.4580 (2)	0.55854 (16)	0.27863 (16)	0.0401 (5)
C14	0.5453 (2)	0.49992 (16)	0.25966 (15)	0.0384 (5)
C15	0.5413 (2)	0.44950 (16)	0.18286 (15)	0.0384 (5)
C16	0.2719 (3)	0.5372 (2)	0.07464 (19)	0.0551 (7)
H16A	0.2881	0.5871	0.0378	0.083*
H16B	0.2047	0.5491	0.1049	0.083*
H16C	0.2621	0.4841	0.0401	0.083*
C17	0.4548 (3)	0.6036 (2)	0.36637 (19)	0.0588 (8)
H17A	0.4966	0.6585	0.3652	0.088*
H17B	0.487	0.5645	0.4096	0.088*
H17C	0.3786	0.6164	0.3799	0.088*
C18	0.6333 (3)	0.3827 (2)	0.16668 (19)	0.0535 (7)
H18A	0.6067	0.3384	0.126	0.08*
H18B	0.6552	0.354	0.2201	0.08*
H18C	0.6964	0.4133	0.1437	0.08*
C19	0.2853 (2)	0.64413 (18)	0.2303 (2)	0.0489 (6)

H19A	0.2688	0.6758	0.1766	0.059*
H19B	0.313	0.6872	0.2728	0.059*
S20	0.15895 (7)	0.59076 (5)	0.26844 (6)	0.0598 (2)
C21	0.0714 (2)	0.6832 (2)	0.2755 (2)	0.0534 (7)
C22	0.0959 (3)	0.7726 (2)	0.2634 (2)	0.0627 (8)
H22	0.167	0.7891	0.2465	0.075*
C23	0.0164 (3)	0.8378 (3)	0.2760 (3)	0.0754 (10)
H23	0.0333	0.898	0.2674	0.09*
C24	-0.0876 (3)	0.8128 (3)	0.3012 (3)	0.0837 (12)
H24	-0.1412	0.8561	0.3121	0.1*
C25	-0.1127 (3)	0.7240 (3)	0.3104 (3)	0.0831 (12)
H25	-0.1841	0.7072	0.3263	0.1*
N26	-0.0351 (2)	0.6605 (2)	0.29666 (19)	0.0687 (8)
O27	-0.0591 (2)	0.57455 (19)	0.3027 (2)	0.0984 (10)
C28	0.6442 (2)	0.49055 (18)	0.32203 (17)	0.0450 (6)
H28A	0.6531	0.5448	0.3561	0.054*
H28B	0.712	0.4813	0.2903	0.054*
S29	0.62016 (6)	0.39480 (5)	0.39312 (5)	0.0517 (2)
C30	0.7555 (2)	0.37491 (19)	0.43343 (17)	0.0475 (6)
C31	0.8492 (3)	0.4281 (2)	0.4247 (2)	0.0604 (8)
H31	0.8431	0.4844	0.3993	0.073*
C32	0.9529 (3)	0.3962 (3)	0.4545 (3)	0.0771 (10)
H32	1.0171	0.4301	0.4475	0.093*
C33	0.9589 (4)	0.3142 (3)	0.4943 (3)	0.0871 (13)
H33	1.0278	0.2922	0.5142	0.104*
C34	0.8648 (4)	0.2647 (3)	0.5050 (2)	0.0772 (11)
H34	0.8701	0.2094	0.5327	0.093*
N35	0.7633 (2)	0.29458 (17)	0.47588 (16)	0.0572 (6)
O36	0.6727 (2)	0.24782 (16)	0.48565 (16)	0.0756 (7)
O1L	-0.1572 (5)	0.5507 (4)	0.1374 (4)	0.205 (2)
H1L	-0.12	0.5136	0.1649	0.308*
C2L	-0.0867 (7)	0.5996 (6)	0.0829 (5)	0.189 (3)
H2LA	-0.0521	0.6478	0.115	0.284*
H2LB	-0.1301	0.6237	0.0351	0.284*
H2LC	-0.03	0.5606	0.0615	0.284*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0480 (14)	0.0322 (12)	0.0432 (13)	0.0010 (10)	0.0013 (11)	-0.0040 (10)
C2	0.0599 (16)	0.0485 (16)	0.0447 (14)	-0.0036 (13)	0.0087 (12)	-0.0060 (12)
C3	0.0659 (19)	0.066 (2)	0.0471 (15)	0.0032 (16)	0.0085 (14)	-0.0108 (14)
C4	0.0639 (18)	0.065 (2)	0.0594 (18)	0.0085 (16)	-0.0044 (15)	-0.0287 (16)
C5	0.0639 (18)	0.0428 (16)	0.071 (2)	-0.0009 (14)	-0.0044 (15)	-0.0194 (14)
N6	0.0517 (12)	0.0371 (12)	0.0536 (13)	-0.0005 (10)	0.0007 (10)	-0.0030 (10)
O7	0.0869 (16)	0.0497 (12)	0.0620 (13)	-0.0199 (11)	0.0136 (12)	0.0040 (10)
S8	0.0649 (4)	0.0383 (3)	0.0351 (3)	-0.0115 (3)	0.0081 (3)	-0.0010 (2)
C9	0.0598 (16)	0.0381 (14)	0.0352 (12)	-0.0108 (12)	0.0078 (11)	-0.0017 (10)

C10	0.0494 (14)	0.0304 (12)	0.0346 (12)	-0.0079 (10)	0.0060 (10)	0.0004 (9)
C11	0.0465 (13)	0.0332 (12)	0.0425 (13)	-0.0049 (10)	0.0034 (11)	0.0048 (10)
C12	0.0450 (13)	0.0290 (12)	0.0467 (13)	-0.0001 (10)	0.0082 (11)	0.0028 (10)
C13	0.0497 (14)	0.0294 (12)	0.0416 (13)	0.0001 (10)	0.0079 (11)	-0.0017 (10)
C14	0.0464 (13)	0.0305 (12)	0.0384 (12)	-0.0026 (10)	0.0037 (10)	0.0024 (10)
C15	0.0477 (13)	0.0293 (12)	0.0387 (12)	-0.0008 (10)	0.0094 (10)	0.0007 (9)
C16	0.0574 (17)	0.0541 (17)	0.0534 (16)	0.0011 (14)	-0.0053 (13)	0.0049 (13)
C17	0.074 (2)	0.0518 (17)	0.0513 (16)	0.0057 (15)	0.0062 (14)	-0.0164 (13)
C18	0.0585 (17)	0.0464 (16)	0.0557 (16)	0.0127 (13)	0.0063 (13)	-0.0059 (13)
C19	0.0485 (14)	0.0331 (13)	0.0655 (17)	0.0037 (11)	0.0095 (13)	0.0016 (12)
S20	0.0567 (4)	0.0417 (4)	0.0823 (5)	0.0054 (3)	0.0209 (4)	0.0093 (3)
C21	0.0492 (15)	0.0523 (17)	0.0592 (17)	0.0065 (13)	0.0094 (13)	0.0061 (13)
C22	0.0565 (17)	0.0502 (17)	0.082 (2)	0.0055 (14)	0.0066 (16)	0.0005 (16)
C23	0.073 (2)	0.054 (2)	0.100 (3)	0.0166 (18)	0.006 (2)	0.0046 (19)
C24	0.074 (2)	0.078 (3)	0.099 (3)	0.032 (2)	0.014 (2)	0.010(2)
C25	0.0563 (19)	0.096 (3)	0.099 (3)	0.020 (2)	0.0250 (19)	0.020 (2)
N26	0.0583 (15)	0.0674 (18)	0.0815 (19)	0.0050 (14)	0.0231 (14)	0.0188 (15)
O27	0.0813 (18)	0.0709 (17)	0.146 (3)	-0.0036 (14)	0.0488 (18)	0.0273 (17)
C28	0.0495 (14)	0.0383 (14)	0.0471 (14)	-0.0038 (11)	-0.0007 (12)	0.0030 (11)
S29	0.0522 (4)	0.0503 (4)	0.0524 (4)	-0.0049 (3)	-0.0013 (3)	0.0111 (3)
C30	0.0598 (16)	0.0425 (14)	0.0399 (13)	0.0037 (12)	-0.0041 (12)	-0.0029 (11)
C31	0.0605 (18)	0.0562 (18)	0.0639 (18)	-0.0008(15)	-0.0104 (15)	-0.0032 (15)
C32	0.058 (2)	0.085 (3)	0.087 (3)	0.0017 (18)	-0.0141(18)	-0.015(2)
C33	0.080 (3)	0.092(3)	0.087 (3)	0.030 (2)	-0.032(2)	-0.016(2)
C34	0 101 (3)	0.066(2)	0.064(2)	0.025(2)	-0.022(2)	0.0010(17)
N35	0.0801(18)	0.000(2)	0.0001(2)	0.028(2)	-0.0035(12)	0.0002(11)
036	0.0988(18)	0.0528(14)	0.0755(15)	-0.0065(13)	0.0083(14)	0.0178(12)
01L	0.0300(10)	0.187 (4)	0.0755(15)	-0.065(4)	-0.012(3)	-0.012(3)
C2L	0.213(1) 0.178(5)	0.107(1)	0.179 (5)	-0.041(4)	-0.012(3)	0.012(3)
						(.)
Geometric par	rameters (Å, °)					
C1—N6		1.364 (3)	C19–	-S20	1.82	2 (3)
C1—C2		1.377 (4)	C19–	-H19A	0.97	
C1—S8		1.751 (2)	C19–	–H19B	0.97	
C2—C3		1.376 (4)	S20-	-C21	1.73	7 (3)
C2—H2		0.93	C21–	-N26	1.36	8 (4)
C3—C4		1.377 (5)	C21–	C22	1.37	8 (4)
С3—Н3		0.93	C22–	C23	1.37	9 (4)
C4—C5		1.368 (5)	C22–	-H22	0.93	
C4—H4		0.93	C23–	C24	1.36	8 (5)
C5—N6		1.349 (4)	C23–	-H23	0.93	
С5—Н5		0.93	C24–	C25	1.36	6 (6)
N6—O7		1.306 (3)	C24–	-H24	0.93	
S8—C9		1.820 (3)	C25–	–N26	1.34	8 (5)
C9—C10		1.517 (3)	C25-	-H25	0.93	
С9—Н9А		0.97	N26-	027	1.31	8 (4)
С9—Н9В		0.97	C28–	-S29	1.83	0 (3)
C10-C15		1.394 (4)	C28–	-H28A	0.97	

C10—C11	1.404 (4)	C28—H28B	0.97
C11—C12	1.400 (4)	S29—C30	1.742 (3)
C11—C16	1.510 (4)	C30—N35	1.368 (4)
C12—C13	1.404 (4)	C30—C31	1.384 (4)
C12—C19	1.508 (3)	C31—C32	1.394 (5)
C13—C14	1.400 (3)	С31—Н31	0.93
C13—C17	1.516 (4)	C32—C33	1.370 (6)
C14—C15	1.406 (3)	С32—Н32	0.93
C14—C28	1.510 (3)	C33—C34	1.361 (6)
C15—C18	1.511 (4)	С33—Н33	0.93
C16—H16A	0.96	C34—N35	1.358 (4)
C16—H16B	0.96	C34—H34	0.93
C16—H16C	0.96	N35—O36	1.302 (4)
C17—H17A	0.96	O1L—C2L	1.414 (9)
С17—Н17В	0.96	O1L—H1L	0.82
С17—Н17С	0.96	C2L—H2LA	0.96
C18—H18A	0.96	C2L—H2LB	0.96
C18—H18B	0.96	C2L—H2LC	0.96
C18—H18C	0.96		
N6—C1—C2	120.1 (2)	H18A—C18—H18C	109.5
N6—C1—S8	111.72 (18)	H18B—C18—H18C	109.5
C2—C1—S8	128.2 (2)	C12-C19-S20	108.98 (18)
C3—C2—C1	119.8 (3)	C12—C19—H19A	109.9
С3—С2—Н2	120.1	S20-C19-H19A	109.9
C1—C2—H2	120.1	С12—С19—Н19В	109.9
C2—C3—C4	119.3 (3)	S20—C19—H19B	109.9
С2—С3—Н3	120.4	H19A—C19—H19B	108.3
С4—С3—Н3	120.4	C21—S20—C19	100.44 (13)
C5—C4—C3	119.8 (3)	N26—C21—C22	118.4 (3)
С5—С4—Н4	120.1	N26—C21—S20	112.7 (2)
C3—C4—H4	120.1	C22—C21—S20	128.9 (2)
N6C5C4	120.9 (3)	C21—C22—C23	120.8 (3)
N6—C5—H5	119.6	C21—C22—H22	119.6
С4—С5—Н5	119.6	С23—С22—Н22	119.6
O7—N6—C5	121.4 (2)	C24—C23—C22	119.0 (4)
O7—N6—C1	118.5 (2)	С24—С23—Н23	120.5
C5—N6—C1	120.1 (3)	С22—С23—Н23	120.5
C1—S8—C9	100.86 (12)	C25—C24—C23	119.9 (3)
C10—C9—S8	106.53 (16)	C25—C24—H24	120
С10—С9—Н9А	110.4	C23—C24—H24	120
S8—C9—H9A	110.4	N26—C25—C24	120.7 (3)
С10—С9—Н9В	110.4	N26—C25—H25	119.7
S8—C9—H9B	110.4	C24—C25—H25	119.7
Н9А—С9—Н9В	108.6	O27—N26—C25	121.3 (3)
C15—C10—C11	120.6 (2)	O27—N26—C21	117.7 (3)
C15—C10—C9	120.3 (2)	C25—N26—C21	121.0 (3)
С11—С10—С9	119.1 (2)	C14—C28—S29	108.76 (17)
C12—C11—C10	119.0 (2)	C14—C28—H28A	109.9
C12—C11—C16	120.1 (2)	S29—C28—H28A	109.9

C10-C11-C16	120.9 (2)	C14—C28—H28B	109.9
C11—C12—C13	121.0 (2)	S29—C28—H28B	109.9
C11—C12—C19	119.0 (2)	H28A—C28—H28B	108.3
C13—C12—C19	120.0 (2)	C30—S29—C28	100.76 (13)
C14—C13—C12	119.0 (2)	N35—C30—C31	120.3 (3)
C14—C13—C17	120.3 (2)	N35—C30—S29	111.7 (2)
C12—C13—C17	120.7 (2)	C31—C30—S29	127.9 (2)
C13—C14—C15	120.3 (2)	C30—C31—C32	119.2 (3)
C13-C14-C28	119.9 (2)	С30—С31—Н31	120.4
C15-C14-C28	119.8 (2)	С32—С31—Н31	120.4
C10-C15-C14	119.8 (2)	C33—C32—C31	119.2 (4)
C10-C15-C18	121.1 (2)	С33—С32—Н32	120.4
C14-C15-C18	119.1 (2)	С31—С32—Н32	120.4
C11—C16—H16A	109.5	C34—C33—C32	120.4 (4)
С11—С16—Н16В	109.5	С34—С33—Н33	119.8
H16A—C16—H16B	109.5	С32—С33—Н33	119.8
С11—С16—Н16С	109.5	N35—C34—C33	121.1 (4)
H16A—C16—H16C	109.5	N35—C34—H34	119.4
H16B—C16—H16C	109.5	С33—С34—Н34	119.4
С13—С17—Н17А	109.5	O36—N35—C34	121.7 (3)
С13—С17—Н17В	109.5	O36—N35—C30	118.7 (3)
H17A—C17—H17B	109.5	C34—N35—C30	119.6 (3)
С13—С17—Н17С	109.5	C2L—O1L—H1L	109.5
H17A—C17—H17C	109.5	O1L—C2L—H2LA	109.5
H17B—C17—H17C	109.5	O1L—C2L—H2LB	109.5
C15-C18-H18A	109.5	H2LA—C2L—H2LB	109.5
C15-C18-H18B	109.5	O1L—C2L—H2LC	109.5
H18A—C18—H18B	109.5	H2LA—C2L—H2LC	109.5
C15—C18—H18C	109.5	H2LB—C2L—H2LC	109.5
N6-C1-C2-C3	-0.2 (4)	C13—C14—C15—C10	3.0 (3)
S8—C1—C2—C3	-178.9 (2)	C28-C14-C15-C10	-177.1 (2)
C1—C2—C3—C4	-1.6 (5)	C13-C14-C15-C18	-176.4 (2)
C2—C3—C4—C5	1.6 (5)	C28—C14—C15—C18	3.5 (3)
C3—C4—C5—N6	0.2 (5)	C11—C12—C19—S20	81.2 (3)
C4—C5—N6—O7	178.1 (3)	C13—C12—C19—S20	-99.9 (2)
C4—C5—N6—C1	-1.9 (4)	C12—C19—S20—C21	-177.6 (2)
C2—C1—N6—O7	-178.1 (3)	C19—S20—C21—N26	174.9 (2)
S8—C1—N6—O7	0.8 (3)	C19—S20—C21—C22	-5.5 (4)
C2-C1-N6-C5	1.9 (4)	N26—C21—C22—C23	2.8 (5)
S8—C1—N6—C5	-179.1 (2)	S20—C21—C22—C23	-176.7 (3)
N6-C1-S8-C9	177.65 (19)	C21—C22—C23—C24	0.3 (6)
C2—C1—S8—C9	-3.5 (3)	C22—C23—C24—C25	-2.5 (7)
C1—S8—C9—C10	178.14 (19)	C23—C24—C25—N26	1.5 (7)
S8—C9—C10—C15	92.9 (2)	C24—C25—N26—O27	-177.9 (4)
S8—C9—C10—C11	-86.7 (2)	C24—C25—N26—C21	1.8 (6)
C15—C10—C11—C12	-1.1 (3)	C22—C21—N26—O27	175.8 (3)
C9—C10—C11—C12	178.6 (2)	S20—C21—N26—O27	-4.5 (4)
C15—C10—C11—C16	179.3 (2)	C22—C21—N26—C25	-3.9 (5)
C9—C10—C11—C16	-1.0 (3)	S20-C21-N26-C25	175.7 (3)

C10-C11-C12-C13	-2.6 (4)	C13—C14—C28—S29	94.8 (2)
C16—C11—C12—C13	177.0 (2)	C15—C14—C28—S29	-85.0 (2)
C10-C11-C12-C19	176.3 (2)	C14—C28—S29—C30	162.19 (18)
C16—C11—C12—C19	-4.1 (4)	C28—S29—C30—N35	-168.0 (2)
C11—C12—C13—C14	6.3 (4)	C28—S29—C30—C31	10.1 (3)
C19—C12—C13—C14	-172.5 (2)	N35-C30-C31-C32	4.3 (5)
C11—C12—C13—C17	-172.2 (2)	S29—C30—C31—C32	-173.7 (3)
C19—C12—C13—C17	9.0 (4)	C30—C31—C32—C33	-2.1 (5)
C12—C13—C14—C15	-6.5 (3)	C31—C32—C33—C34	-0.3 (6)
C17—C13—C14—C15	172.0 (2)	C32—C33—C34—N35	0.7 (6)
C12-C13-C14-C28	173.6 (2)	C33—C34—N35—O36	180.0 (3)
C17—C13—C14—C28	-7.9 (4)	C33—C34—N35—C30	1.4 (5)
C11-C10-C15-C14	0.8 (3)	C31—C30—N35—O36	177.5 (3)
C9-C10-C15-C14	-178.9 (2)	S29—C30—N35—O36	-4.2 (3)
C11-C10-C15-C18	-179.8 (2)	C31-C30-N35-C34	-3.9 (4)
C9—C10—C15—C18	0.5 (3)	S29-C30-N35-C34	174.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1L—H1L···O27	0.82	2.41	2.804 (7)	110
C16—H16A···O36 ⁱ	0.96	2.47	3.348 (4)	152
C16—H16B…S20	0.96	2.68	3.420 (3)	135
C18—H18B…S29	0.96	2.79	3.515 (3)	133
C25—H25····O7 ⁱⁱ	0.93	2.44	3.147 (5)	133
C28—H28A···O7 ⁱ	0.97	2.48	3.397 (3)	157
C31—H31····O27 ⁱⁱⁱ	0.93	2.35	3.107 (4)	139
C2—H2···Cg1 ^{iv}	0.93	2.91	3.774 (3)	154
C4—H4···Cg1 ^v	0.93	2.67	3.377 (3)	134

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x, y+1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, -y+1, -z; (v) x, -y-1/2, z-3/2.

Fig. 1